MB106 QU&NTIT&TIVE TECHNIQUES

MODULE I

LECTURE 9

Duality of LP and its interpretation continued

Example:

```
Obtain the dual of the following primal problem
Minimize Z=3x_1-2x_2+x_3
Subject to the constraints
2x_1 - 3x_2 + x_3 \le 5 \rightarrow (1)
4x_1 - 2x_2 \ge 9 \rightarrow (2)
-8 x_1 + 4x_2 + 3 x_3 = 8 \rightarrow (3)
x_1 \ge 0, x_2 \ge 0, x_3 is unrestricted
As x_3 is unrestricted let x_3 = x_{31} - x_{32} where x_{31} \ge 0, x_{32} \ge 0
```

On substituting $x_{31} - x_{32}$ **for** x_3 **and considering equality constraints** the given problem becomes Minimize $Z=3x_1 - 2x_2 + x_{31} - x_{32}$ Subject to the constraints $2x_1 - 3x_2 + x_{31} - x_{32} \le 5 \rightarrow (1)$ $4x_1 - 2x_2 \ge 9 \rightarrow (2)$ $-8 x_1 + 4x_2 + 3x_{31} - 3x_{32} \ge 8 \rightarrow (3)$ $-8 x_1 + 4x_2 + 3x_{31} - 3x_{32} \le 8 \rightarrow (4)$ $x_1 \ge 0, x_2 \ge 0, x_{31} \ge 0, x_{32} \ge 0$

```
Multiplying constraints 1 and 4 by -1 to convert \leq to \geq we get
Minimize Z=3x_1 - 2x_2 + x_{31} - x_{32}
Subject to the constraints
-2x_1+3x_2-x_{31}+x_{32} \ge -5 \rightarrow (1)
4x_1 - 2x_2 \ge 9 \rightarrow (2)
-8 x_1 + 4x_2 + 3x_{31} - 3x_{32} \ge 8 \rightarrow (3)
8 x_1 - 4x_2 - 3x_{31} + 3x_{32} \ge -8 \rightarrow (4)
x_1 \ge 0, x_2 \ge 0, x_{31} \ge 0, x_{32} \ge 0
```

LPP-UNRESTRICTED VARIABLES IN DUALITY
Hence the dual of the problem is
Maximize W=-5y₁ + 9y₂ +8y₃ -8y₄
Subject to the constraints

$$-2y_1 + 4y_2 - 8y_3 + 8y_4 + \le 3 \rightarrow (1)$$

 $3y_1 - 2y_2 + 4y_3 - 4y_4 \le -2 \rightarrow (2)$
 $-y_1 + 3y_3 - 3y_4 \le 1 \rightarrow (3)$
 $y_1 - 3y_3 + 3y_4 \le -1 \rightarrow (4)$
 $y_1 \ge 0, y_2 \ge 0, y_3 \ge 0$, $y_4 \ge 0$, $y_5 \ge 0 \rightarrow$ non negativity
restrictions
where y_1, y_2, y_3, y_4 are dual variables associated with primal
constraints 1,2,3 and 4 respectively

```
Putting y_3 - y_4 = y we get
Maximize W = -5y_1 + 9y_2 + 8y_3
Subject to the constraints
 -2y_1 + 4y_2 - 8y \le 3 \rightarrow (1)
3y_1 - 2y_2 + 4y \leq -2 \rightarrow (2)
-y_1 + 3y \le 1 \rightarrow (3) -y_1 + 3y = 1
y_1 - 3y \leq -1 \rightarrow (4)
y_1 \ge 0, y_2 \ge 0, y is unrestricted
 where y_1, y_2, y are dual variables associated with primal constraints
 1,2 and 3 respectively
```

• TILL WE MEET AGAIN IN THE NEXT CLASS......

