MB106 QU&NTIT&TIVE TECHNIQUES

MODULE I

LECTURE 8

Duality of LP and its interpretation

DUALITY IN LINEAR PROGRAMMING

- For every LP problem(primal), there exists a related unique LP problem involving the same data which also describes the original problem. This is called the *dual* problem.
- If the primal contains n variables and m constraints, the dual will contain m variables and n constraints.
- The maximization problem in the primal becomes the minimization problem in the dual and vice versa.
- The maximization problem has \leq constraints while the minimization problem has \geq constraints.
- The coefficients in the objective function of the primal become the RHS constants in the constraints of the dual.
- The constants on the RHS of the constraints of the primal become the coefficients of the objective function in the dual.

DUALITY THEOREMS

The dual of the dual is the primal.

- ☆The value of the objective function Z for any feasible solution of the primal is ≤ the value of the objective function W for any feasible solution of the dual.
- If either the primal or the dual problem has an unbounded solution, then the solution to the other problem is infeasible
- If both the primal and the dual problems have feasible solutions then both have optimal solutions and max Z=min W

Complementary slackness theorem:

- a) If a primal variable is positive then the corresponding dual constraintis an equation at the optimum
- b) If the primal constraint is a strict inequality, then the corresponding dual variable is zero at the optimum
- c) If a dual variable is positive then the corresponding primal constraint is an equation at the optimum
- d) If a dual constraint is a strict inequality then the corresponding primal variable is zero at the optimum.

LPP-DU&LITY

```
Example:
Construct the dual of the problem
Minimize Z=3x_1 - 2x_2 + 4x_3
Subject to the constraints
x_1 \ge 0, x_2 \ge 0, x_3 \ge 0 \rightarrow non negativity restrictions
3x_1 + 5x_2 + 4x_3 \ge 7 \rightarrow (1)
6x_1 + x_2 + 3x_3 \ge 4 \rightarrow (2)
7x_1 - 2x_2 - x_3 \le 10 \rightarrow (3)
x_1 - 2x_2 + 5x_3 \ge 3 \rightarrow (4)
4x_1 + 7x_2 - 2x_3 \ge 2 \rightarrow (5)
In a minimization problem, all constraints should be of the \geq type
Therefore multiplying constraint 3 by – we get
-7x_1+2x_2+x_3 \ge -10
```

LPP-DU&LITY

```
Hence the dual of the problem is
Maximize W = 7y_1 + 4y_2 - 10y_3 + 3y_4 + 2y_5
Subject to the constraints
y_1 \ge 0, y_2 \ge 0, y_3 \ge 0, y_4 \ge 0, y_5 \ge 0 \rightarrow non negativity
 restrictions
3y_1 + 6y_2 - 7y_3 + y_4 + 4y_5 \le 3 \rightarrow (1)
5y_1 + y_2 + 2y_3 - 2y_4 + 7y_5 \le -2 \rightarrow (2)
4y_1 + 3y_2 + y_3 + 5y_4 - 2y_5 \le 4 \rightarrow (3)
 where y_1, y_2, y_3, y_4, y_5 are dual variables associated with primal
 constraints 1,2,3,4, and 5 respectively
```

LPP-EQUALITY CONSTRAINTS IN DUALITY

Example:

Obtain the dual of the following primal LP problem

Minimize $Z=x_1+2x_2$

Subject to the constraints

```
x_1 \ge 0, x_2 \ge 0 \rightarrow non negativity restrictions

2x_1 + 4x_2 \le 160 \rightarrow (1)

x_1 - x_2 = 30 \rightarrow (2)

x_1 \ge 10 \rightarrow (3)
```

LPP-EQUALITY CONSTRAINTS IN DUALITY

Because the problem is a minimization problem, changing all ≤ type constraints to ≥ type and = type constraints to two constraints of ≤ and ≥ type we get

Minimize $Z=x_1+2x_2$

Subject to the constraints

```
x_1 \ge 0, x_2 \ge 0 \rightarrow non negativity restrictions
```

```
-2x_1 - 4x_2 \ge -160 \rightarrow (1)
```

 $x_1 - x_2 \ge 30 \quad \rightarrow (2)$ $x_1 - x_2 \le 30 \quad \rightarrow (3)$

$$x_1 \ge 10 \rightarrow (3)$$

LPP-EQUALITY CONSTRAINTS IN DUALITY

```
Hence the dual of the problem is
Maximize W = -160y_1 + 30y_2 - 30y_3 + 10y_4
Subject to the constraints
y_1 \ge 0, y_2 \ge 0, y_3 \ge 0, y_4 \ge 0 \rightarrow non negativity restrictions
-2y_1 + y_2 - y_3 + y_4 \le 1 \rightarrow (1)
-4y_1 - y_2 + y_3 \le 2 \rightarrow (2)
Taking y_2 - y_3 = y' the LP problem becomes
Maximize W = -160y_1 + 30y' + 10y_4
Subject to the constraints
-2y_1 + y' + y_4 \leq 1 \rightarrow (1)
-4y_1 - y' \leq 2 \rightarrow (2)
y_1 \ge 0, y_4 unrestricted
```

• TILL WE MEET AGAIN IN THE NEXT CLASS......

