MB106 QUANTITATIVE TECHNIQUES

MODULE I

LECTURE 7

Linear Programming: Big M Method continued

Example:

Minimize $Z=2x_1 + 3x_2$

Subject to

 $x_1 \ge 0, x_2 \ge 0 \rightarrow$ non negativity restrictions

$$x_1 + x_2 \ge 5 \rightarrow (1)$$

$$x_1 + 2x_2 \ge 6 \rightarrow (2)$$

Converting the maximization problem to a minimization one by multiplying by -1

Maximize $Z'=-2x_1 - 3x_2$

Introducing slack/surplus variables to convert inequalities into equalities

Maximize $Z' = -2x_1 - 3x_2 + 0s_1 + 0s_2$

Subject to

$$x_1 + x_2 - s_1 = 5 \rightarrow (1)$$

$$x_1 + 2x_2 - s_2 = 6 \rightarrow (2)$$

 $x_1 \ge 0, x_2 \ge 0, s_1 \ge 0$, $s_2 \ge 0 \rightarrow$ non negativity restrictions

Putting $x_1=0$ and $x_2=0$ in constraints 1 and 2 we get

$$s_1 = -5, s_2 = -6$$

Since negative values for the slack variables are not allowed we introduce artificial variables A_1 and A_2 .

$$x_1 + x_2 - s_1 + A_1 = 5 \rightarrow (1)$$

$$x_1 + 2x_2 - s_2 + A_2 = 6 \rightarrow (2)$$

$$x_1 \ge 0$$
, $x_2 \ge 0$, $s_1 \ge 0$, $s_2 \ge 0$, $A_1 \ge 0$, $A_2 \ge 0 \rightarrow$ non negativity restrictions

Putting $x_1=0$, $x_2=0$, $s_1=0$ and $s_2=0$ in constraints 1 and 2 we get

$$A_1 = 5$$
, $A_2 = 6$

To eliminate artificial variables from the final solution (because artificial variables with values greater than zero destroy the equality required by the LP Model), a large *penalty* or negative value(-M) is assigned to the artificial variables in the objective function

Maximize
$$Z' = -2x_1 - 3x_2 + 0s_1 + 0s_2 - MA_1 - MA_2$$

Objective function	c _j	-2	-3	0	0	-M	-M					
e _i	CSV	x ₁	x ₂	s ₁	s ₂	A ₁	A ₂	b _i	θ			
-M	A_1	1	1	-1	0	1	0	5	5	KEY		
-M	A_2	1	2	0	-1	0	1	6	3			
Z _j =e _i a _{ij}		-2M	-3M	М	M	-M	-M			ROW		
C_j - Z_j		-2+2M	-3+3M	М	-M	0	0			outgoingvariable A_2		
KEY COLUMN KEY ELEMENT incoming variable X ₂												

Objective function	c _j	-2	-3	0	0	-M	-M		
e _i	CSV	x ₁	x ₂	s ₁	s ₂	A ₁	A_2	b _i	θ
-M	A_1	1	1	-1	0	1	0	5	
-3	x ₂	1/2	1	0	-1/2	0	1/2	3	
Z _j =e _i a _{ij}									
C_j - Z_j									

Dividing the key row by 2 to get unity for key element

Objective function	c _j	-2	-3	0	0	-M		
e _i	CSV	x ₁	X ₂	s ₁	s ₂	A ₁	b _i	θ
-M	A_1	1/2	0	-1	1/2	1	2	4
-3	x ₂	1/2	1	0	-1/2	0	3	6
Z _j =e _i a _{ij}		-M/2- 3/2	-3	M	- M/2+3/ 2	-M		
C _j - Z _j		-2-(M+3)/2 =(-1+M)/2	0	-M	(-3+M)/2	0		

Incoming variable X₁ Key Element

Outgoing variable A₁

Objective function	c _j	-2	-3	0	0		
e _i	CSV	x ₁	X ₂	s ₁	s ₂	b _i	θ
-2	X_1	1	0	-2	1	4	
-3	X_2	1/2	1	0	-1/2	3	
Z _j =e _i a _{ij}		-M/2- 3/2	-3	M	- M/2+3/ 2		
C _j - Z _j		-2-(M+3)/2 =(-1+M)/2	0	-M	(-3+M)/2		

Multiplying row 1 by 2 to make the key element unity

Objective function	c _j	-2	-3	0	0		
e _i	CSV	X ₁	X ₂	s ₁	s ₂	b _i	θ
-2	x_{1}	1	0	-2	1	4	
-3	X_2	0	1	1	-1	1	
$Z_j = e_i a_{ij}$		-2	-3	1	1		
C_j - Z_j		0	0	-1	-1		

Dividing row 2 by 2 and subtracting the corresponding results from row 1

All C_i- Z_is are negative or zero. Hence optimality is reached .

Therefore $x_1 = 4$, $x_2 = 1$ and $Z = 2 x_1 + 3 x_2 = 2X4 + 3X1 = 11$

• TILL WE MEET AGAIN IN THE NEXT CLASS......

