MB106 QU&NTIT&TIVE TECHNIQUES

MODULE I

LECTURE 10

Duality and it's Economic Interpretation

Example:

A company makes three products X, Y and Z out of three raw materials A, B and C. The number of units of raw materials required to produce one unit of the product is as given in the table below:

	X	Y	Z
А	1	2	1
В	2	1	4
С	2	5	1

- The unit profit contribution of the products X, Y and Z are Rs. 40, Rs 25 and Rs 50 respectively and the number of units of raw materials available are 36, 60 and 45 respectively.
- (i) Determine the product mix that will maximize the total profit.
- (ii) From the final simplex table, write the solution to the dual and

```
Let x<sub>1</sub> be the number of units of X produced
Let x<sub>2</sub> be the number of units of Y produced
Let x_3 be the number of units of Z produced
Therefore the LPP is
Maximize Z = 40x_1 + 25x_2 + 50x_3
Subject to
x_1 \ge 0, x_2 \ge 0, x_3 \ge 0 \rightarrow non negativity restrictions
x_1 + 2x_2 + x_3 \le 36 \rightarrow (1)
2x_1 + x_2 + 4x_3 \le 60 \rightarrow (2)
2x_1 + 5x_2 + x_3 \le 45 \rightarrow (3)
```

```
Introducing slack variables s<sub>1</sub>, s<sub>2</sub> and s<sub>3</sub> we get
Maximize Z=40x_1 + 25x_2 + 50x_3 + 0s_1 + 0s_2 + 0s_3
Subject to
x_1 \ge 0, x_2 \ge 0, x_3 \ge 0, s_1 \ge 0, s_2 \ge 0, s_3 \ge 0 \rightarrow non negativity restrictions
x_1 + 2x_2 + x_3 + s_1 = 36 \rightarrow (1)
2x_1 + x_2 + 4x_3 + s_2 = 60 \rightarrow (2)
2x_1 + 5x_2 + x_3 + s_3 = 45 \rightarrow (3)
Putting x_1 = 0, x_2 = 0, x_3 = 0 we get
s_1 = 36, s_2 = 60, s_3 = 45
```


Objective function →	с _ј	40	25	50	0	0	0	
e _i	CSV	x ₁	x ₂	x ₃	<i>s</i> ₁	s ₂	s ₃	b _i
0	s ₁	0	1/6	0	1	-1/6	-1/3	11
50	X ₃	0	-4/3	1	0	1/3	-1/3	5
40	x ₁	1	19/6	0	0	-1/6	2/3	20
$Z_j = e_i a_{ij}$		40	60	50	0	10	10	1050
C _j - Z _j		0	-35	0	0	-10	-10	

inereiore the optimal solution to the primal is

$$Z_{max}$$
T=Rs 1050, x_1 =20, x_2 =0, x_3 =5
Solution to the dual

 W_{min} = Rs 1050, =0, =10, =10(Z_i values from optimal simplex tableau)

```
The dual problem is
Minimize W = 36y_1 + 60y_2 + 45y_3
Subject to
y_1 \ge 0, y_2 \ge 0, y_3 \ge 0 \rightarrow non negativity restrictions
y_1 + 2y_2 + 2y_3 \ge 40 \rightarrow (1)
2y_1 + y_2 + 5y_3 \ge 25 \rightarrow (2)
y_1 + 4y_2 + y_3 \ge 50 \rightarrow (3)
```

ECONOMIC INTERPRETATION

- The marginal values of raw materials A, B and C are Rs 0, Rs 10 and Rs 10 per unit respectively when sold instead of using in-house.
- They represent the accounting values and not necessarily the market price.
- The purchaser will try to minimize his purchase cost which will be Rs 1050/-
- Same contribution of Rs 1050/- will be obtained by the organization irrespective of whether the raw materials are used in-house or sold out.

SHADOW PRICE

- The net evaluation row or the index row(C_j- Z_j) indicates the amount by which the profit will increase if a unit of the corresponding variable is introduced into the solution in case opf positive values.
- A negative value indicates loss.
- The net evaluation row in case of slack variables indicates the shadow prices which are the accounting values for the resources.(-10 under s₂ indicates a loss of Rs 10/- for every unit of B unutilized.

• TILL WE MEET AGAIN IN THE NEXT CLASS......

