MIS 301 RELATIONAL DATABASE MANAGEMENT SYSTEM

DATABASE MANAGEMENT SYSTEM

Database Design: Functional Dependencies, Normalization & denormalization

Lecture 21, 22 & 23

FUNCTION&L DEPENDENCIES

- An attribute Y is said to be functionally dependent on attribute X if say Y takes up a value B whenever X takes up a value A but if Y takes up a value B, it is not essential for X to take up A.
- ♦ Symbolic representation: $X \rightarrow Y$
- The left side of FD is known as a determinant, the right side is known as a dependent.

Types of Functional Dependencies

- Multivalued dependency
- Trivial functional dependency
- Non-trivial functional dependency
- Transitive dependency

MULTIVALUED DEPENDENCY

- Multivalued dependency occurs when two attributes in a table are independent of each other, but both depend on a third attribute.
- In the given example Stream and Extracurricular are independent of each other but both dependent on student.
- Symbolic representation: Student_name→→Stream, Student_name→→Extracurricular

Student_Name	Stream	Extracurricular
Ravi	Marketing	Cricket
Rajesh	Finance	Cricket
Dinesh	Marketing	Swimming
Dinesh	Marketing	Painting
Rajesh	Finance	Painting
Ritika	MIS	Dancing
Surabhi	Human_resource	Dancing

TRIVIAL FUNCTIONAL DEPENDENCY

Trivial – If a functional dependency X→Y holds, where Y is a subset of X, then it is called a trivial FD.

Example {roll_no, name}→name

{roll_no, name}→roll_no

Non-trivial – If an FD X → Y holds, where Y is not a subset of X, then it is called a non-trivial FD.

Example name→father_name

Completely non-trivial – If an FD X → Y holds, where x intersect Y = Φ, it is said to be a completely non-trivial FD.

Example college→principal

TRANSITIVE DEPENDENCY

- ♦ When an indirect relationship causes functional dependency it is called Transitive Dependency.
 If P → Q and Q → R is true, then P→R is a transitive dependency.
- Example :
 - college→ principal principal
- ☆Transitive dependency says college→qualification

ADVANTAGES OF FUNCTIONAL DEPENDENCIES

- Functional Dependency removes data redundancy where the same values should not be repeated at multiple locations in the same database table ensuring elimination of data inconsistency.
- It ensures good quality of data in the database.
- It allows clearly defined meanings and constraints of databases.
- It helps in identifying bad designs of the database.

NORMALIZATION

- Redundancy in relation may cause insertion, deletion and updation anomalies.
- Normalization is the process of minimizing redundancy from a relation or set of relations.
- Normalization is usually obtained by breaking tables into multiple tables.
- The core idea of database normalization is to divide the tables into smaller sub-tables and store pointers to data rather than replicating it
- Normalization helps in
- Reducing the amount of storage needed to store the data.
- Avoiding unnecessary data conflicts that may creep in because of multiple copies of the same data getting stored.

1ST DEGREE NORMALIZATION - 1NF

- A relation is said to be in 1NF i.e. normalized to the first degree if and only if all attributes in the relation contain atomic values.
- Atomic values refer to absence of multiple values in an attribute of a table. All attributes are single valued.
- The following table is not in 1NF because Subject taught is not atomic as it contains multiple values.

Teacher_code	Teacher_name	Subject_taught
T1	Radhika Sen	Physics , Mathematics
T2	Geeta Kanwal	Chemistry
Т3	Rajiv Gupta	English, Biology

1ST DEGREE NORMALIZATION - 1NF

- A relation is said to be in 1NF i.e. normalized to the first degree if and only if all attributes in the relation contain atomic values.
- Atomic values refer to absence of multiple values in an attribute of a table. All attributes are single valued.
- ✤ The following table is in 1NF because all attributes contain indivisible, atomic values.

Teacher_code	Teacher_name	Subject_taught
T1	Radhika Sen	Physics
T2	Geeta Kanwal	Chemistry
Т3	Rajiv Gupta	English
T1	Radhika Sen	Mathematics
Т3	Rajiv Gupta	Biology

2ND DEGREE NORMALIZATION - 2 NF

A relation is said to be normalized to the second degree if it is normalized to the first degree and every non-key attribute is functionally dependent on the key attribute.
Here Sname, Stream, City_cd, Ct_name, Ct_status are functionally dependent on Roll_no.
Tname and Tdesig are functionally dependent on T_code. Subject and marks are functionally dependent on roll_no+T_code.
Hence this relation is not in 2NF.

Roll_no	Sname	Stream	City_cd	Ct_name	Ct_status	T_code	Tname	Tdesig	Subject	Marks
101	Ranjan	Science	12	Durgapur	2	T1	NGupta	AsstProf	Physics	64
102	Geeta	Science	14	Kolkata	1	T1	NGupta	AsstProf	Physics	72
101	Ranjan	Science	12	Durgapur	2	T2	SSimgh	AsocProf	English	58
103	Nikhil	Science	13	Ondal	3	Τ4	PKaur	Prof	Maths	80
104	Aditya	SScience	12	Durgapur	2	T5	GSen	AsstProf	History	68
104	Aditya	SScience	12	Durgapur	2	T5	GSen	AsstProf	Civics	78
105	Biman	SScience	14	Kolkata	1	T4	PKaur	Prof	Logic	80

2ND DEGREE NORMALIZATION - 2 NF

A relation is said to be normalized to the second degree if it is normalized to the first degree and every non-key attribute is functionally dependent on the key attribute.
 Here Sname, Stream, City_cd, Ct_name, Ct_status are functionally dependent on Roll_no.
 Tname and Tdesig are functionally dependent on T_code. Subject and marks are functionally dependent on roll_no+T_code.

✤Hence the relations student, teacher and result are in in 2NF.

Roll_ no	Sname	Stream	City_cd	Ct_name	Ct_stat us	T_code	Tname	Tdesig	Roll_no	T_code	Subject	Marks
101	Ranjan	Science	12	Durgapur	2	T1	NGupta	AsstProf	101	T1	Physics	64
102	Geeta	Science	14	Kolkata	1	T2	SSimgh	AssoProf	102	T1	Physics	72
103	Nikhil	Science	13	Ondal	3	T4	PKaur	Prof	101	T2	English	58
104	Adituo	Sscience	10	Durgopur	2	T5	GSen	AsstProf	103	T4	Maths	80
104	Auitya	SSCIENCE	12	Durgapur	Z		Teacher		104	T5	History	68
105	Biman	SScience	14	Kolkata	1				104	T5	Civics	78
		Stude	nt						105	T4	Logic	80
											Result	

3RD DEGREE NORMALIZATION - 3 NF

A relation is said to be normalized to the third degree if it is normalized to the second degree and every non-key attribute is non-transitively dependent on the key attribute.
Here Sname, Stream, City_cd, Ct_name, Ct_status are functionally dependent on Roll_no.
Tname and Tdesig are functionally dependent on T_code. Subject and marks are functionally dependent on roll_no+T_code. But there is a transitive dependence in student.
Ct_name and Ct_status are functionally dependent on city_cd also besides being dependent on roll_no. Therefore transitive dependence exists.
Hence these relations are not in 3NF.

Roll_ no	Sname	Stream	City_cd	Ct_name	Ct_stat us	T_code	Tname	Tdesig	Roll_no	T_code	Subject	Marks
101	Ranjan	Science	12	Durgapur	2	T1	NGupta	AsstProf	101	T1	Physics	64
102	Geeta	Science	14	Kolkata	1	Т2	SSimgh	AssoProf	102	T1	Physics	72
102	Geetta	Selence		Konkata	-	т_ Т_	DKaur	Drof	101	T2	English	58
103	Nikhil	Science	13	Ondal	3	14	PKaur	Prof	103	T4	Maths	80
104	Aditva	SScience	12	Durgapur	2	T5	GSen	AsstProf	104	T5	History	68
104	Auitya	Solence	12	Duigapui	2	Teacher			104	T5	Civics	78
105	Biman	SScience	14	Kolkata	1	Student		Result	105	T4	Logic	80

3RD DEGREE NORMALIZATION - 3 NF

A relation is said to be normalized to the third degree if it is normalized to the second degree and every non-key attribute is non-transitively dependent on the key attribute.
Here Sname, Stream, City_cd are functionally dependent on the key field in relation Roll_no.
Tname and Tdesig are functionally dependent on the key field in relation T_code.
Subject and marks are functionally dependent on the key field in relation roll_no+T_code.
Ct_name and Ct_status are functionally dependent on city_cd, the key field in relation city.
Hence these relations are in 3NF.

Roll_ no	Sname	Stream	City_cd	City_cd	Ct_name	Ct_st atus	T_code	Tname	Tdesig	Roll_no	T_code	Subject	Marks
101	Ranjan	Science	12	12	Durgapur	2	T1	NGupta	AsstProf	101	T1	Physics	64
102	Geeta	Science	14	14	Kolkata	1	T2	SSimgh	AssoProf	102	T1	Physics	72
							ТЛ	DKaur	Prof	101	T2	English	58
103	Nikhil	Science	13	13	Ondal	3	14	FRAUI	FIU	103	T4	Maths	80
104	Aditvo	SScience	17		C:1		T5	GSen	AsstProf	104	T5	History	68
104	Auitya	5500000	12		City		Teacher			104	тг	Civies	70
105	Biman	SScience	14	Ctudor						104	15	CIVICS	/8
	2			Sluder	11				Result	105	T4	Logic	80

- BCNF is a stronger form of 3NF considering candidate keys and not just primary keys.
- BCNF says that every candidate key must be a determinant
- A table is in Boyce-Codd Normal form if and only if at least one of the following conditions are met for each functional dependency $A \rightarrow B$:
 - A is a superkey(a set of attributes uniquely identifying tuples in a relation).
 - It is a trivial functional dependency.

All relations in BCNF are in 3NF but the reverse may not be true

Considering a relation Std_tchr_sub containing attributes student_name, Teacher_name and subject

where

1. Each subject is taught to a student by a single teacher

2. Each teacher teaches only one subject

3. A subject is taught by several teachers

✤FDs in this relation are:

{Student_name, Subject}→Teacher_name

Teacher_name→Subject

The two overlapping candidate keys are student+subject and student+teacher
 The relation is in 3NF but not in BCNF

> The relations are decomposed into two relations Stud_tchr containing student and teacher and tchr_sub containing teacher and subject, the keys in the two tables being student and teacher respectively

>Now the relations are in 3NF as well as in BCNF

DENORMALIZATION

- Denormalization is a database optimization technique where redundant data are added in the database to get rid of complex join operations.
- Denormalization is done after normalization for improving the performance of the database.
- Advantages of Denormalization:-Query execution is fast since fewer tables have to be joined.
- Disadvantages of Denormalization:-As data redundancy is there, update and insert operations are more expensive and take more time. Data Integrity is not maintained in denormalization.

• TILL WE MEET AGAIN IN THE NEXT CLASS......

