MB106 QU&NTIT&TIVE TECHNIQUES

MODULE I

LECTURE 6

Linear Programming: Big M Method

- This method is suitable for problems with greater than equal to or equal to constraints.
- Start by expressing the linear programming problem in the standard form.
- ☆Add non negative variables to the left hand side of all the constraints of = or ≥ type called *artificial variables*.
- The artificial variables violate the equality constraints and are hence removed after obtaining the initial basic feasible solution.
- Proceed with the regular simplex method.

Example:

```
Maximize Z=3 x_1 - x_2
Subject to
x_1 \ge 0, x_2 \ge 0 \rightarrow non negativity restrictions
2 x_1 + x_2 \ge 2 \rightarrow (1)
x_1 + 3x_2 \le 3 \rightarrow (2)x_2 \le 4 \rightarrow (3)
```

Introducing slack variables to convert inequalities into equalities

Maximize
$$Z=3x_1 - x_2 + 0s_1 + 0s_2 + 0s_3$$

Subject to
 $2x_1+x_2-s_1 = 2 \rightarrow (1)$
 $x_1+3x_2+s_2 = 3 \rightarrow (2)$
 $x_2+s_3 = 4 \rightarrow (3)$
 $x_1 \ge 0, x_2 \ge 0, s_1 \ge 0, s_2 \ge 0, s_3 \ge 0 \rightarrow$ non negativity restrictions
Putting $x_1=0$ and $x_2=0$ in constraints 1, 2 and 3 we get
 $s_1 = -2, s_2 = 3, s_3 = 4$

Since negative values for the slack variables are not allowed we introduce artificial variable A. $2 x_1 + x_2 - s_1 + A = 2 \rightarrow (1)$ $x_1+3x_2+s_2=3 \rightarrow (2)$ $x_{2}+s_{3}=4 \rightarrow (3)$ $x_1 \ge 0, x_2 \ge 0, s_1 \ge 0, s_2 \ge 0, s_3 \ge 0, A \ge 0 \rightarrow$ non negativity restrictions Putting $x_1=0$, $x_2=0$ and $s_1=0$ in constraints 1, 2 and 3 we get $A = 2, s_2 = 3, s_3 = 4$

To eliminate artificial variables from the final solution (because artificial variables with values greater than zero destroy the equality required by the LP Model), a large *penalty* or negative value(-M) is assigned to the artificial variable in the objective function

Maximize $Z=3x_1 - x_2 + 0s_1 + 0s_2 + 0s_3 - MA$

Objective function →	C _j	3	-1	0	0	0	-M		
e _i		x ₁	x ₂	s ₁	s ₂	s ₃	А	b _i	θ
3	X ₁	1	1/2	-1/2	0	0	1/2	1	
0	s ₂	1	3	0	1	0	0	3	
0	s ₃	0	1	0	0	1	0	4	
Z _j =e _i a _{ij}									
C _j - Z _j									

Dividing the key row by 2 to get unity for key element

Objective function →	C _j	3	-1	0	0	0					
e _i		x ₁	x ₂	s ₁	s ₂	s ₃	b _i	θ			
3	x ₁	1	1/2	-1/2	0	0	1	-2	KEY ROW		
0	s ₂	0	5/2	1/2	1	0	2	4	outgoing variable S ₂		
0	s ₃	0	1	0	0	1	4	∞			
Z _j =e _i a _{ij}		3	3/2	-3/2	0	0					
C _j - Z _j		0	-5/2	3/2	0	0					
KEY COLUMN KEY ELEMENT											
Subtracting the key row from row 2 to get unity for key element and ZERO for other elements of key column											

(Since artificial variable A has been thrown out of the solution, the column representing A is deleted.)

Objective function →	С _ј	3	-1	0	0	0		
e _i		x ₁	x ₂	s ₁	s ₂	s ₃	b _i	θ
3	x ₁	1	3	0	1	0	3	
0	s ₁	0	5	1	2	0	4	
0	s ₃	0	1	0	0	1	4	
Z _j =e _i a _{ij}		3	9	0	3	0		
C _j - Z _j		0	-10	0	-3	0		

Dividing row 2 by 2 and adding to row 1 to make all elements in key column, other than key element, ZERO.

All C_i- Z_i s are negative or zero. Hence no further improvement of the solution is possible.

Therefore $x_1=3$, $x_2=0$, $s_1=4$, $s_2=0$, $s_3=4$

• TILL WE MEET AGAIN IN THE NEXT CLASS......

