MB106 QU&NTIT&TIVE TECHNIQUES

MODULE I

LECTURE 2

Linear Programming: Formulating maximization/minimization problems

FORMULATION OF LINEAR PROGRAMMING MODEL - A MAXIMIZATION PROBLEM

 A chemical company produces two products A and B. Each unit of product A requires 3 hrs on operation I and 4 hrs on operation II while each unit of product B requires 4 hrs on operation I and 5 hrs on operation II. Total available time for operations I and II are 20 and 26 hrs respectively. The production of each unit of product B results in two units of a by-product C at no extra cost. Product A sells at a profit of Rs. 10/- per unit while B sells at a profit of Rs. 20/- per unit. By-product C fetches Rs. 6/- if sold else its destruction cost is Rs. 4/- per unit. Forecast says not more than 5 units of C will sell. To maximise profits how many units of A and B should be produced?

FORMULATION OF LINEAR PROGRAMMING MODEL -THE SOLUTION (OBJECTIVE FUNCTION)

- To find: units of A and B to be produced
- Let x₁ be the number of units of A produced
- Let x₂ be the number of units of B produced
- Let x_z be the number of units of C produced= x₃ + x₄ where x₃ is the number of unit of C sold and x₄ is the number of unit of C destroyed
- Therefore $x_1 \ge 0$, $x_2 \ge 0$, $x_3 \ge 0$, $x_4 \ge 0 \rightarrow$ non-negativity constraints
- The objective-Maximization of profits earned
- Therefore the objective function is

Maximize Z=10 x_1 +20 x_2 +6 x_3 - 4 x_4

FORMUL&TION OF LINE&R PROGR&MMING MODEL -THE SOLUTION(CONSTR&INTS)

- $3x_1 + 4x_2 \le 20$ \rightarrow time available on operation I
- $4x_1 + 5x_2 \le 26$ \rightarrow time available on operation 2
- $x_3 \le 5$ \rightarrow number of units of C sold
- If x_2 units of B are produced $2x_2$ units of C will be produced which is $x_3 + x_4$
- Therefore $2x_2=x_3 + x_4 \rightarrow$ number of units of C produced or $-2x_2+x_3+x_4=0$

FORMULATION OF LINEAR PROGRAMMING MODEL -THE MODEL

Maximize Z=10 $x_1 + 20 x_2 + 6x_3 - 4 x_4$				
Subject to				
$ x_1 \ge 0, x_2 \ge 0, x_2 \ge 0,$	$x_4 \ge 0 \rightarrow$ non-negativity constraints			
• $3x_1 + 4x_2 \le 20$	ightarrowtime available on operation I			
• $4x_1 + 5x_2 \le 26$	\rightarrow time available on operation 2			
• x ₃ ≤5	\rightarrow number of units of C sold			
• $-2x_2 + x_3 + x_4 = 0$	ightarrow number of units of C produced			

FORMULATION OF LINEAR PROGRAMMING MODEL –PROBLEM 3→MINIMIZATION

 A dietician wants to decide the constituents of the diet for her patient that will fulfil his daily requirements of proteins, fats and carbohydrates at the minimum cost. The choice has to be made from four different types of foods. The yields per unit of these foods are

<u>yield/unit</u>				<u>cost(Rs)</u>
<u>Food type</u>	<u>proteins</u>	<u>fats</u>	<u>carbohydrates</u>	<u>per unit</u>
1	3	2	6	45
2	4	2	4	40
3	8	7	7	85
4	6	5	4	65
Minimum require	<u>ements </u> 800	200	700	

FORMULATION OF LINEAR PROGRAMMING MODEL -THE SOLUTION (OBJECTIVE FUNCTION)

- To find: units of food types 1,2,3 and 4 to constitute the diet
- Let x₁ be the number of units of food type 1
- Let x₂ be the number of units of food type 2
- Let x₃ be the number of units of food type 3
- Let x₄ be the number of units of food type 3
- Therefore $x_1 \ge 0$, $x_2 \ge 0$, $x_3 \ge 0$, $x_4 \ge 0 \rightarrow$ non-negativity constraints
- The objective-Minimization of cost subject to availability of required nutrients.
- Therefore the objective function is

Minimize Z=45 x_1 +40 x_2 +85 x_3 + 65 x_4

FORMUL&TION OF LINE&R PROGR&MMING MODEL -THE SOLUTION(CONSTR&INTS)

- $3x_1 + 4x_2 + 8x_3 + 6x_4 \ge 800 \rightarrow \text{protein constraint}$
- $2x_1 + 2x_2 + 7x_3 + 5x_4 \ge 200 \rightarrow$ fat constraint
- $6x_1 + 4x_2 + 7x_3 + 4x_4 \ge 700 \rightarrow carbohydrate constraint$

FORMULATION OF LINEAR PROGRAMMING MODEL -THE MODEL

Minimize Z=45
$$x_1$$
 +40 x_2 +85 x_3 + 65 x_4 Subject to
subject to
 $x_1 \ge 0, x_2 \ge 0, x_3 \ge 0, x_4 \ge 0$ \rightarrow non-negativity constraints
 $3x_1+4x_2+8x_3+6x_4\ge 800$ \rightarrow protein constraint
 $2x_1+2x_2+7x_3+5x_4\ge 200$ \rightarrow fat constraint
 $6x_1+4x_2+7x_3+4x_4\ge 700$ \rightarrow carbohydrate constraint

• TILL WE MEET AGAIN IN THE NEXT CLASS......

